2017年軍隊文職人員招聘崗位能力高頻考點:牛吃草問題

軍隊文職人員招聘的崗位能力數(shù)學運算,是很多同學比較頭疼的部分,但是大部分題型只要大家理解了其實是非常簡單的,比如接下來紅師教育專家將要為大家講解的牛吃草問題。 一、什么是牛吃草問題? 英著名的物理學家牛頓曾編過這樣一道題:牧場上有一片青草,每天都生長得一樣快。這片青草供給10頭牛吃,可以吃22天,或者供給16頭牛吃,可以吃10天,如果供給25頭牛吃,可以吃多少天? 它的題干特征在于:有一草地,且它的初始值是固定的。有兩個量(牛和草)在作用于這片草地。當然,此類題還有個隱含條件,即每頭牛每天的吃草速度和數(shù)量必須都是相同的,否則此題應該無解。 二、轉化為追擊的牛吃草問題 當作用于這片草地的兩個量的作用是相反的時候,這時候的牛吃草問題可以轉化為追擊問題。

轉化為追擊的牛吃草問題就存在這樣一個基本公式: 設每頭牛每天吃草的速度為1 原有草量=(牛的頭數(shù)1-草生長速度)時間 母題1:牧場上有一片青草,每天都生長得一樣快。這片青草供給10頭牛吃,可以吃22天,或者供給16頭牛吃,可以吃10天,如果供給25頭牛吃,可以吃多少天? 設原有草量為M,草生長速度為x,時間為t,根據(jù)題意我們可以列連等式: M=(10-x)22=(16-x)10=(25-x)t 解得x=5,M=110,t=5.5天 例題1:某水庫共有10個泄洪閘,當10個泄洪閘全部打開時,8小時可將水位由警戒線將至安全水位;只打開6個泄洪閘時,這個過程為24個小時,如水庫每小時的入庫量穩(wěn)定,問如果打開8個泄洪閘時,需要多少小時可將水位將至安全水位?

這片青草供給10頭牛吃,可以吃22天,或者供給16頭牛吃,可以吃10天。那么最多可以放多少頭牛,才能保證草永遠不被牛吃完? 如果是追擊問題,要想草永遠不被牛吃完,就可以理解為牛永遠追不上草。而追不上的條件即為牛吃草的速度草生長的速度,極值情況即為牛吃草的速度=草生長的速度的時候。 設每頭牛每天吃草量為1,草生長速度為x,則有: (10-x)22=(16-x)10 X=5,草生長的速度為5,所以最多放牧5頭牛。 四、轉化為相遇的牛吃草問題 當作用于這片草地的兩個量的作用是相同的時候,這時候的牛吃草問題可以轉化為相遇問題。如下題表現(xiàn),牛吃草使草量變少,草枯萎也使草量變少,作用相同。轉化為相遇的牛吃草問題就存在這樣一個基本公式: 設每頭牛每天吃草的速度為1 原有草量=(牛的頭數(shù)1+草生長速度)時間(即:相遇路程=速度和時間) 母題2:牧場上有一片青草,在冬天的時候草均勻地枯萎。

如果放16頭牛,放牧14天剛好把草吃完,如果放13頭牛,可以放牧多少天? 設原有草量為M,草枯萎速度為x,時間為t,那么: M=(20+x)12=(16+x)14=(13-x)t 解得x=8,M=336,t=16天 例題2:有一個酒桶壞了,每天勻速地往外面流失酒,所以酒桶里面的酒可供7人喝6天,或供5人喝8天,若一人獨飲可以喝幾天? 結合上個母題的思路可以得出 M=(7+x)6=(5+x)8=(1+x)t 解得x=1,M=48,t=24天 總而言之,牛吃草問題相對來說是一種較簡單的題型,只要能把握住其核心:相遇和追擊的本質(zhì),就能從容應對。紅師教育專家提醒各位考生,做題的過程中不用去糾結到底是相遇還是追擊,可以統(tǒng)一以追擊的形式來列式。

2019軍隊文職人員招聘崗位能力技巧之青蛙跳井問題

2019軍隊文職人員招聘崗位能力技巧之青蛙跳井問題。在我們歷年的各類軍隊文職招聘中,會考查一些特殊的工程類問題交替合作,而這類問題會涉及到一種特殊的解題方法青蛙跳井。紅師教育在此為大家介紹一下巧用青蛙跳井規(guī)律解決工程問題的技巧。 一.基本青蛙跳井問題 1.基本青蛙跳井問題最關鍵的題型特征:存在循環(huán)周期性以及周期內(nèi)既有正效率也有負效率。 2.基本模型: 例1.現(xiàn)有一口高10米的井,有一只青蛙坐落在井底,青蛙每一個白天上跳5米,但是由于井壁過于光滑,青蛙每一個晚上下滑3米,問該青蛙幾天能跳出此井? 解答:青蛙白天晚上不停地上跳和下滑,存在周期性,一個白天加一個晚上即一天為一個周期,經(jīng)過一個周期青蛙上跳2米。

總高度是10米,一個周期青蛙上跳2米,因此需要N=[(10-5)2]=3個周期就能保證離井口的距離為5米,([]為向上取整符號),此時青蛙只需一次即可跳出井口,所以最終青蛙需要4天的時間才能跳出此井。 總結利用青蛙跳井規(guī)律解題的基本步驟: 1.確定周期:求一個周期之內(nèi)的效率之和即周期值以及最大的效率即周期峰值; 2.確定循環(huán)周期數(shù):N=[(工作總量-周期峰值)周期值]([]為向上取整符號); 3.確定未完成的工作量:計算剩余的工作時間; 4.確定總時間。 二.青蛙跳井與工程問題結合增減交替合作求時間 特殊的工程問題既有正效率也有負效率的交替合作問題,看似題目難度增大了,其實只是題目的說法變化了一下,其本質(zhì)不變,其本質(zhì)依舊屬于青蛙跳井問題,利用我們上面總結過的基本解題步驟能夠達到快速解題的效果。

當水池是滿的時候,若單獨打開乙排水管,需要10小時可以排空水池。如果按照甲、乙、甲、乙的順序輪流各開1小時,要將水池注滿需要多少小時? 解答:此題可將工作總量設為10份,則甲進水管的效率為+2,乙排水管的效率為-1,甲乙各開1小時為一個周期,即每兩個小時進水1份,周期峰值為+2。循環(huán)周期數(shù)N=[(10-2)1]=8個周期,即16個小時,還有2份工作量未完成,只需甲進水管工作1小時即可,所以最終工作總時間為17個小時。選擇D選項。 例3某糧倉裝有三個輸送帶,甲乙輸入,丙輸出。要想空倉貯滿,甲要4天,乙要5天;要想滿倉送空,丙要10天。那么按照甲、乙、丙......的順序各開1天的交替方式,需要幾天貯滿空倉?

循環(huán)周期數(shù)為N=[(20-9)7]=2個周期,即6天,還剩9份糧食未貯滿,需要甲、乙各工作1天即可,所以最終總工作時間為8天。選擇D選項。 軍隊文職人員招聘崗位能力技巧之青蛙跳井問題,只要把握了青蛙跳井問題的核心規(guī)律即存在周期性、周期內(nèi)有正效率也有負效率,按照總結的基本解題步驟,即可快速解決工程問題中有正有負的交替完工問題。

2020年軍隊文職人員招聘崗位能力備考:植樹問題的解題方式

植樹問題屢屢出現(xiàn)在軍隊文職人員招聘崗位能力數(shù)量關系考試中,雖然題目難度并不是很大,同時考生們也覺得這種題目比較熟悉,但是就是規(guī)律不好把握,所以學生容易出錯。如果大家題目做的多了,其實植樹問題是有規(guī)律可循的,只要能夠掌握植樹問題的相關公式,熟練運用我們的解題方法,那么這種問題肯定能夠輕松應對。 基本類型及基本公式 1、在直線或者不封閉的曲線上植樹,兩端都植樹,棵數(shù)=總路長間距+1 2、在直線或者不封閉的曲線上植樹,兩端都不植樹,棵數(shù)=總路長間距-1 3、在直線或者不封閉的曲線上植樹,只有一端植樹,棵數(shù)=總路長間距 4、封閉曲線上植樹,棵數(shù)=總路長間距 5、雙邊植樹公式=單邊植樹的顆數(shù)2