崗位能力數(shù)學(xué)運(yùn)算之周期問題

在崗位能力的數(shù)學(xué)運(yùn)算部分,尤其是近些年經(jīng)常會出現(xiàn)一些周期性的題目,但考察的方式卻極為廣泛。對此類題型,很多學(xué)生都反應(yīng),平時也做了大量的題,一到考場就感覺無從下手,之所以造成這種反差,國家軍隊(duì)文職考試網(wǎng)()認(rèn)為主要還在于同學(xué)們對周期問題還未抓住其本質(zhì)的特點(diǎn)。下面,針對周期問題進(jìn)行詳解。例1:有甲、乙、丙三輛公交車于上午8:00同時從公交總站出發(fā),三輛車再次回到公交總站所用的時間分別為40分鐘、25分鐘和50分鐘,假設(shè)這三輛公交車中途不休息,請問它們下次同時到達(dá)公交總站將會是幾點(diǎn)?()(聯(lián)考)A.11點(diǎn)整B.11點(diǎn)20分C.11點(diǎn)40分D.12點(diǎn)整解析:這是一道求最小公倍數(shù)的周期問題。從題中可得,甲公交車每40分鐘一趟,是一個周期T=40的周期函數(shù);乙公交車每25分鐘一趟,是一個周期T=25的周期函數(shù);丙公交車每50分鐘一趟,是一個周期T=50的周期函數(shù),上午8點(diǎn)三車同時出發(fā),求三車下次同時到達(dá)公交總站的時間,其實(shí)就是求三個周期函數(shù)的交點(diǎn),交點(diǎn)必是三個不同周期40,25,50的最小公倍數(shù)200,所以從早上8點(diǎn)開始,經(jīng)歷200分鐘后,三車同時到達(dá)公交總站,所以選B。例2:甲每隔4天進(jìn)城一次,乙每隔8天進(jìn)城一次,丙每隔11天進(jìn)城一次,某天三人在城里相遇,那么下次相遇至少要?()A.60天B.180天C.54天D.162天解析:這是一道求最小公倍數(shù)的周期問題。此題描述了甲、乙、丙三個人,分別代表三個不同周期的函數(shù),求三個周期函數(shù)的交點(diǎn),從數(shù)學(xué)角度講,本題難度和解題思路與例1是一樣的;從言語角度講,本題難度比上一題加大了,甲每隔4天進(jìn)一次城,其實(shí)是甲每5天進(jìn)一次城;乙每隔8天進(jìn)一次城,其實(shí)是每9天進(jìn)一次城;丙每隔11天進(jìn)一次城,其實(shí)是每12天進(jìn)一次城,不少考生掉入陷阱,誤求4,8,11的最小公倍數(shù);本題正確解法為求5,9,12的最小公倍數(shù),最小公倍數(shù)是180天。故選B。例3:在我國民間常用十二生肖進(jìn)行紀(jì)年,十二生肖的排列順序是:鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬。2011年是兔年,那么2050年是()(2011安徽省考)A.虎年B.龍年C.馬年D.狗年解析:讀完題,可以很容易判斷出來這是一道周期問題,并且周期T=12。但是,此題與上面兩道周期例題有明顯的區(qū)別:上面兩道題有幾個不同周期函數(shù)并有交點(diǎn),解題思路求最小公倍數(shù)即可;本題只有一個周期函數(shù),這就是周期問題的第2類題型,僅有一個周期函數(shù)題型。我們認(rèn)為,這種題型解起來很簡單,大家只要記住周期公式即可:總數(shù)÷周期數(shù)=循環(huán)式…余數(shù)(不能整除)??倲?shù):2050-2011=39,周期數(shù)=12,39÷12=3…3,從2011年到2050年要經(jīng)歷3個循環(huán)余3年,2011+12×3=2047,2011年是兔年,所以3個循環(huán)后2047年也兔年,再加3年,所以2050年是馬年。故選C。例4:1路、2路和3路公交車都是從8點(diǎn)開始經(jīng)過A站后走相同的路線到達(dá)B站,之后分別是每30分鐘,40分鐘和50分鐘就有1路、2路和3路車到達(dá)A站。在傍晚17點(diǎn)05分有位乘客在A站等候準(zhǔn)備前往B站,他先等到幾路車?()(聯(lián)考)A.1路B.2路C.3路D.2路和3路解析:這是一道周期問題。從早上8點(diǎn)到下午17點(diǎn)05分,共經(jīng)歷545分鐘,1路車的周期數(shù)為30,2路車的周期數(shù)為40,3路車的周期數(shù)位÷30=18…5,從早上8點(diǎn)開始,到下午17:05分,共有18輛1路車經(jīng)過A站,乘客在等第19輛1路車時,已經(jīng)等了5分鐘,30分鐘一趟1路車,所以還需再等25分鐘;545÷40=13…25,從早上8點(diǎn)開始,到下午17:05分,共有13輛2路車經(jīng)過A站,乘客在等第14輛2路車時,已經(jīng)等了25分鐘,40分鐘一趟2路車,所以還需再等15分鐘;545÷50=10…45,從早上8點(diǎn)開始,到下午17:05分,共有10輛3路車經(jīng)過A站,乘客在等第11輛3路車時,已經(jīng)等了45分鐘,50分鐘一趟3路車,所以還需再等5分鐘,所以最先等到3路車。故選C。崗位能力更多解題思路和解題技巧,可參看。

崗位能力數(shù)學(xué)運(yùn)算備考要點(diǎn):牛吃草

牛吃草問題又稱為消長問題或牛頓牧場,是中常見的一種數(shù)學(xué)運(yùn)算類題型,牛吃草問題屬于工程問題的一種,是17世紀(jì)英國偉大的科學(xué)家牛頓提出來的,常見于小學(xué)奧數(shù),其解決方法并不復(fù)雜,只是不太容易理解。下面國家軍隊(duì)文職考試網(wǎng)()從一般工程問題的角度講解下牛吃草問題的解決方法。典型牛吃草問題的條件是假設(shè)草的生長速度固定不變,不同頭數(shù)的牛吃光同一片草地所需的天數(shù)各不相同,求若干頭牛吃這片草地可以吃多少天。由于吃的天數(shù)不同,草又是天天在生長的,所以草的存量隨牛吃的天數(shù)不斷地變化。下面就一道簡單的例題說明一下此類題型的解法。A.6B.5C.4D.3解析:此類題型關(guān)鍵就在于每天草的增長量,如果忽略草的增長不計的話,則轉(zhuǎn)化為一般工程問題,只需用工作總量=工作效率x時間即可。因此,我們就想辦法把草每天的增長量給抵消掉。在第一種情況下,即10頭牛吃20天時,我們把10頭牛分為兩群,假設(shè)一群為x頭,一群為10-x頭,我們安排這x頭牛每天專門負(fù)責(zé)吃生長出來的草量,則剩下10-x頭牛每天的吃草量就是牧場每天草得減少量。因此,要求牧場的草可供10頭牛吃20天也就相當(dāng)于計算牧場的原草量可供10-x頭牛吃20天。設(shè)原草量為y,即可得:y=(10-x)*20。同理可得,y=(15-x)*10。兩個方程聯(lián)立即可求出x,y。這里,x不太好理解,我們可以把他理解為每天草長量相當(dāng)于x頭牛的吃草量,這樣即可得到牛吃草問題的解題公式:草地原有草量=(牛數(shù)-每天長草量)?天數(shù)牛吃草問題的解題公式在中間的應(yīng)用十分廣泛,基本上所有的消長問題都可以直接套用,所謂消長問題,即有兩個量在同時變動,一個增加一個減少,兩個方向不同一的情況。如,牛吃草中,牛吃草使草得增長量在減少,但是,草生長卻使草量增加。下面我們看看中的真題:A.5小時B.4小時C.3小時小時解析:此題明顯是消長問題,泉底和抽水機(jī)分別使池中泉水增加和減少。因此,可套牛吃草公式,此題中,抽水機(jī)就相當(dāng)于牛,泉底涌水就相當(dāng)于草在生長。故可得:y=(8-x)*10y=(12-x)*6,解方程可得:x=2,y=60,則14臺抽水機(jī)要抽干泉池的水要用60÷(14-2)=5小時。消長問題是中比較復(fù)雜的題型,沒有正確的方法做起來無從下手,而崗位能力考試對做題時間的要求又比較高,因此,希望廣大考生能熟記公式,靈活使用,在考試中取得好成績。崗位能力更多解題思路和解題技巧,可參看。

2016年考試崗位能力技巧:如何秒殺數(shù)學(xué)運(yùn)算

牛吃草問題是崗位能力數(shù)學(xué)運(yùn)算??迹瑦劭嫉囊环N題型,并且在近一兩年各大考試中頻繁出現(xiàn)。剛開始同學(xué)們對這類問題很抵觸,老是找不著思路,往往最后都是隨便圖一個選項(xiàng)而了之。其實(shí)這種題型可以在考場上做到秒殺。在這里就給大家分享一下怎么在考場上做到秒殺:我們先來看看什么叫做牛吃草問題,牛吃草問題又稱為消長問題或牛頓問題,草在不斷生長且生長速度固定不變,牛在不斷吃草且每頭牛每天吃的草量相同,供不同數(shù)量的牛吃,需要用不同的時間。我們在解決這類問題的方法是:轉(zhuǎn)化為相遇或追及模型來考慮。一、追及模型原有草量=(牛每天吃掉的草-每天生長的草)×天數(shù)例1:一個牧場長滿青草,牛在吃草而草又在不斷生長,已知牛10頭,20天把草吃盡,同樣一片牧場,牛15頭,10天把草吃盡。如果有牛25頭,幾天能把草吃盡?解析:假設(shè)每頭牛吃草速度是1份,按照公式列出:(10-x)×20=(15-x)×10=(25-x)×t解出:t=5天二、相遇模型原有草量=(牛每天吃掉的草+其他原因每天減少的草量)×天數(shù)例2:牧場上長滿牧草,秋天來了,每天牧草都均勻枯萎,這片牧場可供10頭牛吃8天草,可供15頭牛吃6天??晒?5頭牛吃多少天?解析:假設(shè)每頭牛吃草速度是1份,按照公式列出:(10+x)×8=(15+x)×6=(25+x)×t解出:t=4天只要同學(xué)們掌握以上兩種基本模型,牛吃草問題就不再是困擾你的問題,即使是一種衍生題型也是一個辦法-——秒殺!更多解題思路和解題技巧,可參看。

比較構(gòu)造法解數(shù)學(xué)運(yùn)算_考試崗位能力答題技巧

在軍隊(duì)文職考試崗位能力試卷中,數(shù)學(xué)運(yùn)算往往是備考者們最不愿意觸碰的一座大山:自習(xí)的時候?qū)W不懂、解題的時候做不出,考試的時候就放棄。事實(shí)上,只要方法選對了,數(shù)學(xué)運(yùn)算也是可以秒殺的。秒殺特技有很多,今天就給各位備考者介紹比較構(gòu)造法。一、題型特征:同一事物、兩種描述每一種方法都不是萬能的,都有自己的應(yīng)用環(huán)境,比較構(gòu)造法也是一樣。那什么樣的題型可以應(yīng)用比較構(gòu)造法呢?各位備考者要記好筆記啦!比較構(gòu)造法最主要的題型特征是:對于同一事物,有兩種不同的描述。A.4B.3C.2D.1二、方法應(yīng)用:求同求異、尋找突破在兩種不同的描述中,分析其中的異同,從而尋找突破口,這就是應(yīng)用比較構(gòu)造法解題的關(guān)鍵。在例題1中,兩種不同的描述中,相同的是工程總量沒有變。假設(shè)甲乙都沒有休息,在兩人效率都提高一倍的情況下,工作時間應(yīng)該縮短一半,也就是甲乙共同工作3天即可結(jié)束,換言之,甲乙都可以休息3天。但是實(shí)際情況是,甲只休息了一天,即甲工作了5天,因此乙休息的時間一定多于3天,結(jié)合選項(xiàng)可知,只有A可選,秒殺完成。通過上述例題,相信各位備考者能夠很容易把握比較構(gòu)造法的應(yīng)用環(huán)境與應(yīng)用方法。下面請大家一起來分析一下例題2,檢驗(yàn)一下學(xué)習(xí)成果吧!更多解題思路和解題技巧,可參看。