2015深圳軍隊(duì)文職考試考試崗位能力輔導(dǎo)之方陣問題

例1.用紅、黃兩色鮮花組成的實(shí)心方陣(花盆大小完全相同),最外層是紅花,從外往內(nèi)每層按紅花、黃花相間擺放。如果最外層一圈的正方形有紅花44盆,那么完成造型共需黃花(﹚。 盆盆盆盆 解析:相鄰兩圈之間,外圈人數(shù)總是比內(nèi)圈人數(shù)多8,則相隔一圈相差16,并且成等差數(shù)列。題目中最外圈紅花為44,此外層黃花為36,可知黃花總數(shù)為36+20+4=60。 例2.學(xué)校學(xué)生排成一個方陣,最外層的人數(shù)是60人,問這個方陣共有學(xué)生多少人? 人人人人 解析:核心是求最外層每邊人數(shù)。 根據(jù)四周人數(shù)和每邊人數(shù)關(guān)系可知: 每邊人數(shù)=四周人數(shù)4+1; 方陣最外層每邊人數(shù):604+1=16(人) 整個方陣共有學(xué)生人數(shù):1616=256(人)

2017年軍隊(duì)文職考試崗位能力備考:實(shí)心方陣速解技巧

方陣問題描述是許多人或物按橫著排叫做行(豎著排叫做列)排成正方形(簡稱方陣),再根據(jù)排成的方陣,找出規(guī)律,尋求解決問題的方案。但目前出題中常有方陣的轉(zhuǎn)換及變形,增加了題目的難度,對此,提醒考生首先應(yīng)該準(zhǔn)確判斷方陣的類型,搞清方陣中的一些量(如層數(shù)、最外層人數(shù)、最里層人數(shù)、總?cè)藬?shù))之間的關(guān)系,解題時(shí)開動腦筋,運(yùn)用相關(guān)公式用多種方法來解題。 方陣問題核心要點(diǎn): 1.實(shí)心方陣總?cè)藬?shù)=最外層每邊人數(shù)的平方(方陣問題的核心) 2.方陣最外層每邊人數(shù)=(方陣最外層總?cè)藬?shù)4)+1 3.方陣不管在哪一層,每邊人的數(shù)量都相同,每向里面一層,每邊的數(shù)就減少2 4.方陣每相鄰兩層之間的總?cè)藬?shù)都相差8。 例1:有一隊(duì)士兵排成若干層的中空方陣,外層人數(shù)共有60人,中間一層共44人,則該方陣士兵的總?cè)藬?shù)是: 人人人人 方法一,根據(jù)相鄰兩層人數(shù)相差為8,結(jié)合外層人數(shù)共有60人,中間一層共44人,可知這個方陣從外到內(nèi)每層人數(shù)依次是60、52、44、36、28,所以該方陣士兵的總?cè)藬?shù)是60+52+44+36+28=220人。

例2:若干學(xué)校聯(lián)合進(jìn)行團(tuán)體操表演,參演學(xué)生組成一個方陣,已知方陣由外到內(nèi)第二層有104人,則該方陣共有學(xué)生()人

2015軍隊(duì)文職招聘崗位能力備考指導(dǎo):方陣問題解題技巧

對于方陣來說,不管是實(shí)心的還是空心的,都有以下三個結(jié)論: 1.每層每邊人數(shù)依次增加2人。 2.每層人數(shù)依次增加8人(唯一的特例就是:當(dāng)每邊人數(shù)為奇數(shù)時(shí)最內(nèi)層只有1人,次內(nèi)層有8人,兩層間相差7人) 3.每層人數(shù)=每邊人數(shù)4-4(矩形方陣每層人數(shù)=2(M+N)-4) 其中,對于實(shí)心方陣來說,還有一個結(jié)論:總?cè)藬?shù)=最外層每邊人數(shù)2 例:某學(xué)校的全體學(xué)生剛好排成一個方陣,最外層的人數(shù)是108人,問這個方陣共有多少人?() 解析:每邊人數(shù)=(每層人數(shù)+4)4,所以該方陣最外層每邊有(108+4)4=28,則總?cè)藬?shù)=最外層每邊人數(shù)2=282,尾數(shù)法8*8=64,尾數(shù)是4,選D。 而對于空心方陣來說,與實(shí)心方陣的區(qū)別就在于是中間空了一塊,所以結(jié)論的差別也就在總?cè)藬?shù)上面。

1、總?cè)藬?shù)=層數(shù)中間層人數(shù) 2、總?cè)藬?shù)=最外層每邊人數(shù)2-(最內(nèi)層每邊人數(shù)-2)2 例:有一隊(duì)士兵排成若干層的中空方陣,外層人數(shù)共有60人,中間一層共44人,則該方陣士兵的總?cè)藬?shù)是()。 人人人人 解析:從外往內(nèi)數(shù),最外層有60人,次外層有60-8=52人,第三層有52-8=44人,因此第三層即為中間層,外面有兩層,內(nèi)里應(yīng)該也有兩層,共5層,總?cè)藬?shù)=544=220,故此題答案為C。 除了方陣的一些基本結(jié)論外,方陣還有一種考法即是考變換。有兩種基本考法,一考增減行列,二考打亂重排。 對于增減行列,其實(shí)就是問減少一行一列少多少人,減少兩行兩列少多少人,這同樣是有基本公式的。 減少M(fèi)行和N列,去掉的人數(shù)=最外層每邊的人數(shù)(M+N)-MN 帶入數(shù)據(jù),減少一行一列時(shí),去掉的人數(shù)=最外層每邊的人數(shù)2-1;

減少三行三列時(shí),去掉的人數(shù)=最外層每邊的人數(shù)6-9。 例:某班抽出一些學(xué)生參加節(jié)日活動表演,想排成一個正方形方陣,結(jié)果多出7人;如果每行每列增加一個學(xué)生,排成一個新的正方形方陣,卻少了4人,問共抽出學(xué)生多少人? 解析:后來的方陣減去一行一列得到最初的實(shí)心方陣,去掉的人數(shù)=最外層每邊的人數(shù)2-1=11,則最外層每邊人數(shù)為6,后來的方陣總?cè)藬?shù)為36人。共抽出的學(xué)生為36-4=32人,故此題答案為A。 打亂重排的意思就是將方陣?yán)锏娜巳看騺y重新進(jìn)行排列,解題的核心就是人數(shù)是不變的。 例:希望小學(xué)四年級有學(xué)生若干人,如果排成三層中空方陣,就多9人,如果中空部分增加兩層,則少15人,四年級有學(xué)生多少人?

四年級的學(xué)生總?cè)藬?shù)為120-15=105,故此題答案為C。 (責(zé)任編輯:胡紫倫)